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Abstract. We analyze the diffusive motion of kink solitons governed by the thermal sine-Gordon equation.
We analytically calculate the correlation function of the position of the kink center as well as the diffusion
coefficient, both up to second-order in temperature. We find that the kink behavior is very similar to
that obtained in the overdamped limit: There is a quadratic dependence on temperature in the diffusion
coefficient that comes from the interaction among the kink and phonons, and the average value of the wave
function increases with

√
t due to the variance of the centers of individual realizations and not due to kink

distortions. These analytical results are fully confirmed by numerical simulations.

PACS. 05.40.-a Fluctuation phenomena, random processes, noise and Brownian motion – 05.45.-a
Nonlinear dynamics and nonlinear dynamical systems – 74.50.+r Proximity effects, weak links,
tunneling phenomena, and Josephson effects – 85.25.Cp Josephson devices

1 Introduction

As a key subject within nonlinear science, the dynamics of
emergent, coherent structures (solitons, vortices, etc) has
been a research topic that has attracted very much atten-
tion in the past quarter century [1]. One question, exten-
sively investigated in the literature [2–7] is the following:
Is, and if so, how is the motion and the shape of those ex-
citations modified by the presence of small perturbations?
Indeed, when applied to physical situations of interest,
nonlinear models must incorporate additional terms, such
as damping, constant or periodic external forces, or noise,
to name a few. Among those, stochastic perturbations are
very much of interest in view of their highly non triv-
ial effects on nonlinear systems [8], and a great deal of
work has been devoted to them [2,4,5]. In particular, of
the very many nonlinear models applied to physical prob-
lems, the sine-Gordon (sG) equation has been considered
in much detail in this context, as it applies to, e.g., prop-
agation of ultra-short optical pulses in resonant laser me-
dia [9], a unitary theory of elementary particles [10–13],
propagation of magnetic flux in Josephson junctions [14],
transmission of ferromagnetic waves [15], epitaxial
growth of thin films [16–18], motion of dislocations in
crystals [19,20], flux-line unlocking in type II supercon-
ductors [21], or DNA dynamics [22–24], situations in which
noise (of different origins) can play, and often does, a cru-
cial role. As an example, let us mention the recent work
on long Josephson junctions reported in [25], where the
authors calculated the escape rate from the zero-voltage
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state induced by thermal fluctuations, obtaining very sat-
isfactory results compared with the experimental ones.

Specifically, this work is devoted to the study of the dif-
fusive dynamics of sG kink solitons subjected to a thermal
bath, as given by the stochastically perturbed, damped sG
equation

φtt − φxx + sin(φ) = −αφt + f(x, t, φ,...), (1)

where −αφt is a damping term with a dissipation coef-
ficient α, and f(x, t, φ,...) is a thermal (Gaussian) noise
term fulfilling

f(x, t, φ,...) = −
√
D η(x, t), 〈η(x, t)〉 = 0,

〈η(x, t)η(x′, t′)〉 = δ(x− x′)δ(t− t′), (2)

where
√
D is related to temperature through the fluctu-

ation-dissipation theorem D = 2αkBT , kB being the
Boltzmann constant and T the temperature.

To our knowledge, the first results on problems di-
rectly related to the one we deal with here were obtained
by Joergensen et al. [26], who performed experiments
on Josephson junctions and presented a derivation of
the diffusion constant for kinks. Subsequently, Kaup and
Osman [27] studied, in a more rigorous way, the motion of
damped sG kinks, driven by a constant force, in the pres-
ence of thermal fluctuations by using a singular pertur-
bation expansion. They analyzed the temperature effect
on the mean velocity of the kink and also the changes
in the shape of the kink. In addition, they calculated
the diffusion coefficient of the kink up to first-order in
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temperature and the energy values corresponding to the
translational (ET = kBT/2) and radiational (ER = kBT )
modes. These values of the energy have been also ob-
tained by Marchesoni [28], who applied the McLaughlin
and Scott approach [29] to investigate kink motion under
thermal fluctuations (see [2,3,5] for reviews).

For the sake of completeness, let us mention work done
along a different line, namely that devoted to the diffusive
motion of the kink in equilibrium with phonons in isolated
sG systems (possibly perturbed) [6,30–32]. In this case,
the kink diffusive motion is characterized by two diffusion
coefficients. The first one of them is proportional to T 2

and is related to the anomalous diffusion, that arises from
the phase shifts of kinks colliding with phonons and takes
place on a short time scale in which the collision among
kink and wave packet is elastic; the kink retains the same
velocity after the collision (non-dissipative diffusion) and
suffers only a spatial shift. However, for large times and in
slightly perturbed sG systems, this interaction is nonlinear
and becomes inelastic and the velocity of the kink changes
after the collisions [33]. This diffusive regime is called vis-
cous and has a diffusion coefficient proportional to T−1.
The diffusion of the kink when the low energy excitations
are represented by breathers has also been studied, and
in [34] it has been demonstrated that both descriptions
(breathers or phonons) are equivalent and give rise to the
same diffusion coefficient in the anomalous regime.

In any event, we want to stress that, although in
this type of diffusion problem there are many open ques-
tions [33], we will concern ourselves with the other kind of
diffusion problem, in which the phonons appear as a con-
sequence of an external heat bath, represented by white
noise correlated in space and in time and the damping is
included explicitly à la Langevin. The main aim of this
work is to extend a previous study of ours about the over-
damped limit of sine-Gordon kink diffusion [35] to the
more physical and general case of the underdamped dy-
namics (i.e., with finite dissipation coefficient). As we will
see below, the general perturbative approach [13] we re-
sorted to in the overdamped case can also be applied,
albeit with more difficulties, to the underdamped prob-
lem. The corresponding theoretical analysis is presented
in Section 2, where we obtain explicit expressions for the
long-time diffusive dynamics of kinks up to second-order
in temperature, thus going beyond the currently avail-
able knowledge. The accuracy and importance of the new
terms is assessed by numerical simulations in Section 3:
we will see there that the quadratic corrections are in
good agreement with the simulations and, most impor-
tantly, that they must be taken into account even for not
so large temperatures. Finally, in the conclusions we sum-
marize the main results of this work, comparing the under-
damped and overdamped dynamics of the sG equation and
discussing other related questions.

2 Analytical results

We begin by briefly reviewing the basic results we need
for our analytical approach. We will concern ourselves

with the perturbation effect on the kink solutions of the
unperturbed sG equation, whose static form is

φ0(x) = 4 arctan[exp(x)]. (3)

Small perturbations over this equation can be treated by
calculating the spectrum of linear excitations around the
kink solution [36]: To this end, we write

φ(x, t) = φ0(x) + ψ(x, t), ψ(x, t)� φ0(x), (4)

substitute in (1) (with α = D = 0) and linearize around
φ0(x), arriving at the following equation for ψ(x, t):

ψtt = ψxx −
[
1− 2

cosh2(x)

]
ψ. (5)

Then, assuming that the solution of (5) has the form

ψ(x, t) = f(x) exp
(

iω t
)

(6)

we find the eigenvalue problem for f(x),

−∂
2f

∂x2
+
[
1− 2

cosh2(x)

]
f = ω2f. (7)

This equation admits the following eigenfunctions with
their respective eigenvalues

fT(x) =
2

cosh(x)
, ω2

T = 0, (8)

fk(x) =
exp(i kx) [k + i tanh(x)]√

2π ωk
, ω2

k = 1 + k2, (9)

which represent, respectively, the translation (Goldstone)
mode and the radiation modes. Importantly, the functions
fT(x) and fk(x) form a complete set with the orthogonal-
ity relations ∫ +∞

−∞
f2

T(x) dx = 8, (10)∫ +∞

−∞
fT(x)fk(x) dx = 0, (11)∫ +∞

−∞
fk(x)f∗k′(x) dx = δ(k − k′). (12)

We can now proceed with our problem: In order to tackle
equation (1), with noise as given in (2), we use the same
Ansatz proposed for the overdamped case in [35] (or for
the general Klein-Gordon system in [13]): We assume that
the solution of equation (1) is

φ(x, t) = φ0[x−X(t)] +
∫ +∞

−∞
dkAk(t)fk[x−X(t)],

(13)

where X(t) is the kink position. We now insert (13) in
(1) and use the orthogonality of fk and fT [36], obtaining
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Ẍ(t) + αẊ(t) = −α
8
Ẋ(t)

Z +∞

−∞
dkAk(t)I1(k)− 1

16

Z +∞

−∞
dk

Z +∞

−∞
dk′Ak(t)Ak′(t)R3(k, k′) +

√
D

8

Z +∞

−∞
fT[x−X(t)]η(x, t)dx

− 1

48

Z +∞

−∞
dk

Z +∞

−∞
dk1

Z +∞

−∞
dk2Ak(t)Ak1(t)Ak2(t)R6(k, k1, k2)− Ẋ(t)

4

Z +∞

−∞
dk
∂Ak
∂t

I1(k)

− Ẍ(t)

8

Z +∞

−∞
dkAk(t)I1(k) +

Ẋ2(t)

8

Z +∞

−∞
dkAkI2(k), (14)

∂2Ak
∂t2

+ α
∂Ak
∂t

+ ω2
kAk(t) = αẊ(t)

Z +∞

−∞
dk′Ak′(t)I3(k′, k) +

1

2

Z +∞

−∞
dk

Z +∞

−∞
dk′Ak(t)Ak′(t)R4(k, k′)

−
√
D

Z +∞

−∞
f∗k (x−X(t)) η(x, t)dx+

1

6

Z +∞

−∞
dk′

Z +∞

−∞
dk1

×
Z +∞

−∞
dk2Ak′(t)Ak1(t)Ak2(t)R7(k′, k, k1, k2) + 2Ẋ(t)

Z +∞

−∞
dk′

∂Ak′

∂t
I3(k′, k)

+ Ẍ(t)

Z +∞

−∞
dk′Ak′(t)I3(k′, k) + Ẋ2(t)I1(k), (15)

the following system of differential equation for X(t) and
Ak(t):

see equations (14) and (15) above

where

I1(k) =
∫ +∞

−∞

∂f∗k
∂θ

fT(θ)dθ =
−iπωk

√
2π cosh

(πk
2

) ,
I2(k) =

∫ +∞

−∞

∂2fk
∂θ2

fT(θ)dθ,

R3(k, k′) =
∫ +∞

−∞
fT(θ)

∂fT

∂θ
fk(θ)f∗k′(θ)dθ

= − i(ω2
k − ω2

k′)
2

4ωkωk′ sinh
(π∆k

2

) , ∆k = k′ − k,

I3(k, k′) =
∫ +∞

−∞

∂fk
∂θ

f∗k′(θ)dθ,

R4(k, k′) =
∫ +∞

−∞
(f∗k′(θ))

2 ∂fT

∂θ
fk(θ)dθ, R4(k, k)

=
3iωk

8
√

2π cosh
(πk

2

) ,
R6(k, k1, k2) =

∫ +∞

−∞

∂2fT

∂θ2
fk(θ)f∗k1

(θ)fk2(θ)dθ,

R7(k, k′, k1, k2) =
∫ +∞

−∞
cos(φ0)f∗k′(θ)fk(θ)f∗k1

(θ)fk2(θ)dθ.

(16)

It goes without saying that these equations can not be
solved. Therefore, in order to extract information from
them, we resort to a perturbative approach assuming the

noise term is small, or equivalently, that the tempera-
ture and the dissipation are not too large (this is not
a serious restriction since our single-kink approach does
not apply to high temperatures, when kink-antikink pairs
are thermally generated [37]). We then expand X(t) and
Ak(t) in powers of

√
D, i.e., X(t) =

∑∞
n=1(
√
D)nXn(t)

and Ak(t) =
∑∞
n=1(
√
D)nAnk(t), since when

√
D = 0 and

α = 0 we recover the static kink solution (in this case
initially centered at the origin) of the sG equation. By
substituting these expansions in (14) and (15) we find a
set of linear equations for the coefficients of these series.
The first members of this hierarchy correspond to order
O(
√
D):

Ẍ1(t) + αẊ1(t) =
1
8

∫ +∞

−∞
fT(x−X(t))η(x, t)dx ≡ ε1(t),

(17)

from where we obtain the statistical properties of ε1(t),

〈ε1(t)〉 = 0, 〈ε1(t)ε1(t′)〉 =
1
8
δ(t− t′), (18)

and

∂2A1
k

∂t2
(t) + α

∂A1
k

∂t
(t) + ω2

kA
1
k(t) =∫ +∞

−∞
f∗k (x−X(t)) η(x, t) dx ≡ ξk(t), (19)

which in turn leads to

〈ξk(t)〉 = 0, 〈ξk(t)ξk′ (t′)〉 = δ(t− t′)δ(k − k′). (20)

Equations (17)–(20) have been obtained in [38] by us-
ing a similar, but more restrictive perturbative approach.
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By integrating these two equations we obtain the first-
order terms, X1(t) and A1

k:

X1(t) =
∫ t

0

e−αt
′
∫ t′

0

eατ ε1(τ)dτ dt′,

A1
k(t) = e−

αt
2 {C1(t) sinωt+ C2(t) cosωt} ,

C1(t) =
1
ω

∫ t

0

ξk(τ)e
ατ
2 cosωτdτ,

C2(t) = − 1
ω

∫ t

0

ξk(τ)e
ατ
2 sinωτdτ,

(21)

where ω2 = ω2
k − (α2/4). From these relations we can

calculate the mean values and correlation functions up to
first order in

√
D:

〈X1(t)〉 = 0,

〈X(t)X(t′)〉 = D〈X1(t)X1(t′)〉

=
D

16α3

[
e−αM − e−α|∆t| + e−αM−α|∆t|

− e−α(t+t′) + e−αt + e−αt
′
+ 2(αM − 1)

]
,

(22)

〈Ẋ1(t)〉 = 0,

〈Ẋ(t)Ẋ(t′)〉 = D〈Ẋ1(t)Ẋ1(t′)〉

=
D

16α

[
e−α|∆t| − e−α(t+t′)

]
, (23)

〈A1
k(t)〉 = 0,

〈Ak(t)Ak(t′)〉 = D〈A1
k(t)A1

k(t′)〉

=
D

ω2
e−α(t+t′)/2

[eαM − 1
2α

cosω∆t

− αeαM

8ω2
k

cosω∆t− ωeαM

4ω2
k

sinω|∆t|

+
α

8ω2
k

cosω(t+ t′)− ω

4ω2
k

sinω(t+ t′)
]
,

(24)

where ∆t = t−t′, and M = min(t, t′). Of course, for t′ = t
in equation (22) we recover the result in [27] for 〈[X(t)]2〉.

We now turn to the main point of our work, namely
obtaining the next-order corrections for the position and
the velocity of the center of the kink. This requires the
calculation of the next two contributions to X(t) as well
as the second order in the radiation terms, which are:

O(D)

Ẍ2(t) + αẊ2(t) = ε2(t), (25)

ε2(t) ≡ − ε1(t)
8

∫ +∞

−∞
dkA1

k(t)I1(k)

− Ẋ1(t)
4

∫ +∞

−∞
dk
∂A1

k

∂t
(t)I1(k)

− 1
16

∫ +∞

−∞
dk′
∫ +∞

−∞
dkA1

k(t)A1
k′(t)R3(k, k′),

(26)

∂2A2
k

∂t2
(t) + α

∂A2
k

∂t
(t) + ω2

kA
2
k(t) =

ε1(t)
∫ +∞

−∞
dk′A1

k′(t)I3(k′, k) +
1
2

∫ +∞

−∞
dk

×
∫ +∞

−∞
dk′A1

k(t)A1
k′(t)R4(k, k′)− Ẋ2

1 (t)I1(k)

+ 2Ẋ1(t)
∫ +∞

−∞
dk′

∂A1
k′

∂t
(t)I3(k′, k); (27)

O([
√
D]3)

Ẍ3(t) + αẊ3(t) = ε3(t), (28)

ε3(t) ≡ − ε1(t)
8

∫ +∞

−∞
dkA2

k(t)I1(k)

− ε2(t)
8

∫ +∞

−∞
dkA1

k(t)I1(k)

− 1
16

∫ +∞

−∞
dk
∫ +∞

−∞
dk′A2

k(t)A1
k′(t)R3(k, k′)

− 1
16

∫ +∞

−∞
dk
∫ +∞

−∞
dk′A1

k(t)A2
k′(t)R3(k, k′)

− 1
48

∫ +∞

−∞
dk
∫ +∞

−∞
dk1

×
∫ +∞

−∞
dk2A

1
k(t)A1

k1
(t)A1

k2
(t)R6(k, k1, k2)

+
Ẋ2

1 (t)
8

∫ +∞

−∞
dkA1

k(t)I2(k)− Ẋ1(t)
4

×
∫ +∞

−∞
dk
∂A2

k

∂t
(t)I1(k)− Ẋ2(t)

4

×
∫ +∞

−∞
dk
∂A1

k

∂t
(t)I1(k). (29)

Analogously to what we have done for the first-order cor-
rections, from the solutions of equations (25)–(28) we find
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that

〈X2(t)〉 = 0, 〈Ẋ2(t)〉 = 0, (30)

〈X3(t)〉 = 0, 〈Ẋ3(t)〉 = 0. (31)

As for higher moments, taking into account that the cross-
correlation function of X1(t) and X3(t′) is of the same
order as 〈X2(t)X2(t′)〉, and also that 〈X1(t)X2(t′)〉 = 0
we obtain that

〈[X(t)]2〉 = D〈[X1(t)]2〉+D2(〈[X2(t)]2〉

+ 2〈X1(t)X3(t)〉) + ..., (32)

〈[Ẋ(t)]2〉 = D〈[Ẋ1(t)]2〉+D2(〈[Ẋ2(t)]2〉

+ 2〈Ẋ1(t)Ẋ3(t)〉) + ... (33)

The expressions for the functions 〈[X2(t)]2〉, 〈[Ẋ2(t)]2〉,
〈X1(t)X3(t)〉, and 〈Ẋ1(t)Ẋ3(t)〉 can be obtained after a
lengthy calculation, and are very cumbersome indeed. We
therefore do not include them here. However, for large
time (t� 1/α) these relations can be simplified, yielding,
as t→∞

〈[X(t)]2〉 =
kBT t

4α

{
1 +

kBT

32

(
1 +

9σ2

4

)}
, (34)

〈[Ẋ(t)]2〉 =
kBT

8

{
1 +

3kBT

128

(
12 + σ2

)}
, (35)

with

σ =
∫ +∞

−∞

dk

ωk cosh
(πk

2

) = 1.623 86. (36)

To complete the characterization of the kink diffusion, we
can now compute in a straightforward way the average
value of the wave function φ(x, t), defined as

〈φ(x, t)〉 = 〈φ0[x−
√
DX1(t)]〉+O(D)

=
∫ +∞

−∞
dX1p(X1)φ0[x−

√
DX1(t)], (37)

where p(X1) is the probability distribution function for
X1. To find explicitly this function we note that, if we
rewrite equation (17) as a system of two differential
equations,

Ẋ1 = V,

V̇ = −αV + ε1(t), (38)

the last equation represents an Ornstein-Uhlenbeck pro-
cess for the velocity, and its distribution function is
given by

p(V ) =

√
1

2π〈V 2〉 exp
(
− V 2

2〈V 2〉
)
, (39)

(see [39]). Subsequently, by integrating the first equation
of (38), we obtain that X1 =

∫ t
0
V (τ)dτ . Since V has a

Gaussian distribution function, X1 has also a Gaussian
distribution function, given by (recall that 〈X1(t)〉 = 0)

p(X1) =

√
1

2π〈[X(t)]2〉 exp
(
− 1

2
X2

1

〈[X(t)]2〉
)
, (40)

where the first and second moments of X1 were obtained
before, see equation (22). With this result, the integral
(37), can be evaluated numerically taking into account
equations (22) and (40). In the next section we will com-
pare this result with the mean value of the wave function
as obtained from simulations of the full partial differential
equation (1).

3 Numerical simulations

In order to test the approximate theory developed in the
previous section, we have simulated numerically equa-
tion (1) by using the Heun method [40]. In our simulations
we begin with a kink, initially at rest, with free boundary
conditions. For the damping coefficient we choose α = 0.1,
which is not too small because from (34) we can see that
〈[X(t)]2〉 is proportional to 1/α. This means that if α is too
small the kink can move in a much larger region, forcing us
to increase the length of our simulated system in the sim-
ulations, already quite time consuming. Furthermore, the
relation (34) is only valid for large times (t� 1/α). Again,
for too small α we would need to simulate our equation
for very long times and, as 〈[X(t)]2〉 increases linearly with
time (see Eq. (34)), the system length would once more
have to be large. The other parameters are ∆x = 0.2,
∆t = 0.001 and the length of the system L = 200. We
have calculated all average values over 1 000 realizations
up to a final time 400. It is important to point out that,
this system being inertial, the accuracy of the averages is
considerably less than for overdamped problems, this be-
ing the reason why we have to use such large ensembles of
trajectories to obtain reasonably good results.

An important, nontrivial issue is the question as to how
can we find the center of the kink. We solve this problem
by finding all the discrete lattice points xi and xi+1 such
that φi ≤ π and φi+1 ≥ π or vice versa, and then esti-
mating the corresponding points x̃i where φ = π by linear
interpolation. Afterwards, among the n such points x̃n,
we choose to be the center of the kink the value x̃ = x̃n,
which minimizes

∑L/∆x
i=1 [φi(t) − φ0(x − x̃n, t)]2, i.e., the

discrete version of the integral of the square of the differ-
ence of φ and φ0. It has to be realized that this involves
an assumption, namely that individual realizations of the
kink have a shape similar to that of the unperturbed kink.
As can be seen from Figure 1, where the individual real-
izations are compared with the initial condition (an exact
kink), this is indeed the case and our procedure is truly
sensible. Therefore, we are sure that this method to com-
pute the kink center avoids the false centers, which can
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Fig. 1. Individual kink realizations compared with initial con-
ditions and averages. Shown are three individual realizations
at t = 300 with parameters kBT = 0.4 and α = 0.1 (thin solid
lines), the initial condition given by a kink at rest (dashed
line) and the mean value of φ at the same time obtained from
averaging over 1 000 realizations (thick solid line).

appear for higher temperatures due to fluctuations intro-
ducing a systematic difference between the numerical and
the theoretical results (see [35]). With the procedure we
have just summarized, that works even for relatively large
temperatures, we believe we find a very accurate approxi-
mation to the actual center of the kink. We will come back
to Figure 1 below.

As an example of the comparison of the numerical sim-
ulations of equation (1) with the theoretical results ob-
tained in the previous section and valid for large times,
Figure 2 shows the numerically computed variance of the
center of the kink, 〈[X(t)]2〉− 〈X(t)〉2, as well as the first-
and second-order analytical expressions. The plot clearly
evidences that the numerical variance asymptotically coin-
cides with the second-order expression: Note that to com-
pare the different curves one has to look at the slopes at
times t � 1/α (in this case, t ≥ 100, for instance, as
α = 0.1); the theoretical result is not valid at early times
and therefore there is a bias between analytics and numer-
ics coming from that. The small, irregular oscillations in
the numerical curve arise from the difficulty in accurately
computing averages in an underdamped system like this
mentioned above; however, we believe that the present ac-
curacy is enough to confirm the validity of our approach.
We have observed the same agreement for other values of
temperatures (kBT = 0.2, 0.6, 0.8, not shown). In all cases,
we have computed the diffusion coefficient for large times
as the slope of the variance of X(t) again for t ≥ 100, the
regime in which we expect our analytical approximation to
be valid. Summarizing our results, these numerical values
of the diffusion coefficient are plotted in Figure 3 together
with the theoretical results. It is clear that for large tem-
peratures the quadratic behavior in kBT of the diffusion
coefficient becomes important. For higher values of the
temperature, such as kBT = 0.8, the numerical value of
the diffusion coefficient is not so close to the predicted
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variance of the kink center, 〈[X(t)]2〉− 〈X(t)〉2, for kBT = 0.4.
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of equation (1), whereas the dotted and the solid lines are the
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Fig. 3. Kink diffusion constant vs. temperature. The solid
lines represent the analytical diffusion coefficient up to first-
(lower line) and second-order (upper line). Diamonds stand
for numerical values of the kink center diffusion coefficient,
obtained by numerical integration of equation (1).

one. This effect arises because of the large diffusivity of
the kink in that range: Indeed, for this and higher tem-
peratures the kink performs very long excursions away
from the center, reaching the boundaries of the numeri-
cal integration interval; it is clear that when this occurs,
the diffusion of the kink is not in free space anymore and
hence those realizations spoil the quality of the averages.
The way to solve this problem would be to resort to much
larger numerical systems, but within our present comput-
ing capabilities this would necessitate a simultaneous de-
crease in the number of realizations in the average, leading
again to poorer results. However, it is important to real-
ize that this boundary effect leads to an underestimation
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Fig. 4. Mean value of the wave function (solid line) for two
fixed times, tfix = 100 and tfix = 300, with kBT = 0.6, ob-
tained from numerical simulations of equation (1) compared
to the values of 〈φ(x, t)〉 (points) obtained numerically from
the integral in equation (37). The narrowest solid line is the
initial data (kink initially at rest).

of the diffusion coefficient (as the boundary prevents the
kink from travelling as far as it should) and therefore
the point in Figure 3 for kBT = 0.8 is a lower bound
for the diffusion coefficient, with the actual one lying even
closer to our second order prediction.

Finally, there is one last question that deserves dis-
cussion, namely that of the physical significance of the
mean value of the wave function φ. In Figure 1 we can
clearly see that, whereas individual realizations of kinks
look very similar to the unperturbed ones, the mean value
of φ is a much wider excitation, not even close to the orig-
inal kink. Figure 1 clearly shows that this does not mean
that the width of individual kinks increases; indeed, much
as we discussed regarding the overdamped problem [35],
we have verified numerically that the mean wave func-
tion 〈φ(x, tfix)〉 increases due to the variance of the kink
center of individual realizations, and hence it should not
be interpreted as the typical deformation of the shape
of kinks: Indeed, the widening of the mean value of φ
arises from the contributions of the stochastically moving,
but mostly undistorted kinks whose center positions have
the distribution of a rigid, diffusing particle. To further
check this interpretation, we can look at Figure 4, where
we have represented the mean value of the wave func-
tion for two fixed times tfix = 100, 300, obtained from the
numerical simulation of the full partial differential equa-
tion (1), for kBT = 0.6 and α = 0.1. The overimposed
points, computed by using the Gaussian distribution func-
tion p(X1) (Eq. (40)) of the kink center X(t) =

√
DX1

found in the last section, show the excellent agreement
between our theory and the simulation. Of course, there
is a small discrepancy that is likely to disappear if one
would go to a next order calculation, but for the present
purpose of understanding the mean wave function φ the
first order calculation is enough. In addition, we have plot-
ted the initial kink (at rest) in order to see that the mean
value of the wave function increases with time.

4 Discussion and conclusions

To summarize, in this work we have studied the diffu-
sive dynamics of sine-Gordon kinks subjected to thermal
fluctuations. We have analytically calculated expressions,
valid up to second order in temperature, for the average
position and variance of the kink center, as well as for the
mean shape of the kink. We have numerically checked the
validity of these results up to temperatures of the order of
kBT = 0.8 (in dimensionless units, equivalent to about a
10% of the kink rest mass), already close to the temper-
ature at which kink-antikink nucleation becomes a likely
event. Therefore, our first conclusion is that the second-
order theory developed here is the proper one, meaning it
is accurate and higher order terms are negligible, to de-
scribe the thermal diffusion of sine-Gordon kinks in the
single kink propagation regime. Interestingly, our calcu-
lation pinpoints the fact that the second-order correc-
tion in kBT comes from the interaction between kink and
phonons. This implies that the physics behind this con-
tribution is basically the same as for the case of anoma-
lous diffusion in an isolated chain mentioned in the in-
troduction [6,30–32]. Note that we do not expect T−1

contributions in our analytical calculations, as they are
carried out in a continuum sG equation [6] and, in any
case, they would show up in simulations only for very
low temperatures. Apart from that, it is also interesting
to note that, according to equation (35), the second or-
der term implies an increase of the energy carried by the
kink beyond the kBT/2 predicted by statistical mechan-
ics (recall that the kink mass is 8 in our units). This can
be interpreted in the following way: The kink is dressed
by phonons which increase its mass. Thus, the kink en-
ergy would be M(T )Ẋ2/2, with a temperature dependent
mass M(T ) whose expression can be easily found from
equation (35). In order to confirm this interpretation, one
could compute the energy carried by the phonons which
dress the kink, but we believe that it is not necessary
because, on the one hand, it would be a rather involved
calculation (far beyond the scope of this work) and, on
the other hand, we do not think that there is any other
possible interpretation of this result.

A second relevant point of this study relates to the nu-
merical simulation and center location procedures. As this
is an underdamped (inertial) system, the thermal mobility
of kinks is quite large, the larger the higher the tempera-
ture. Because of this, we have not been able to obtain very
precise numerical averages at the top of the temperature
range studied, since the lengths of the systems and the
number of realizations required are very large and con-
sequently time consuming. However, we believe that the
results presented here are enough to verify our theory.
This is reinforced by the very good agreement between
analytics and numerics regarding the mean shape of the
field, even for temperatures as large as kBT = 0.6 (see
Fig. 3), which shows that our approach indeed captures
the physics of the diffusion process. In addition, we want
to emphasize that, to our knowledge, we have designed a
new algorithm to detect the kink center which gives very
good results even for the highest temperatures studied,
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where previous researches, such as [35], had found prob-
lems arising from the many false centers detected.

Another important issue is the comparison of the pre-
sent analysis to that in [35] for the overdamped prob-
lem. We have found that the diffusion coefficient given
by (34) for the present case practically coincides with that
obtained in [35] for the overdamped limit of the equa-
tion: the difference in the second order is approximately
0.06 kBT , i.e., very small compared to the magnitude of
the quadratic contribution itself. Furthermore, the width
of the mean value of the wave function increases with
time for the overdamped case [35] in the same manner
as that reported here. Therefore, we can conclude that for
large times the dynamic of the underdamped sG kinks is
very similar to the overdamped case. This is an important
point, because in principle one can expect similar results
for other kink-bearing systems such as the φ4 equation, for
instance, whose overdamped diffusive dynamics is known
(see [42] for the φ4 case), thus avoiding the much more
involved calculation of the underdamped case.

Finally, we want to mention the relevance of this work
to experimental systems, such as long Josephson junc-
tions. As has been shown in [25], the thermal sG equa-
tion (1) is a good description of the physics of in-line
Josephson junctions (although different boundary condi-
tions are needed in that case). The work in [25] compared
the predictions from the sG model to experimentally mea-
sured escape rates from the zero voltage state. There-
fore, it should be possible to design similar experiments
in order to test our results and, specifically, the increased
(quadratic) diffusivity of kinks at higher temperatures vs.
the linear behavior at lower ones. We hope that our the-
oretical work stimulates further experimental research in
that direction.
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